Pytorch学习笔记14-结构化数据建模流程范例

由于时效问题,该文某些代码、技术可能已经过期,请注意!!!本文最后更新于:3 年前

结构化数据

1
2
3
4
5
6
7
8
9
10
import os
import datetime

#打印时间
def printbar():
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("\n"+"=========="*8 + "%s"%nowtime)

#mac系统上pytorch和matplotlib在jupyter中同时跑需要更改环境变量
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

一,准备数据

titanic数据集的目标是根据乘客信息预测他们在Titanic号撞击冰山沉没后能否生存。

结构化数据一般会使用Pandas中的DataFrame进行预处理。

1
2
3
4
5
6
7
8
9
10
import numpy as np 
import pandas as pd
import matplotlib.pyplot as plt
import torch
from torch import nn
from torch.utils.data import Dataset,DataLoader,TensorDataset

dftrain_raw = pd.read_csv('/home/kesci/input/data6936/data/titanic/train.csv')
dftest_raw = pd.read_csv('/home/kesci/input/data6936/data/titanic/test.csv')
dftrain_raw.head(10)

利用Pandas的数据可视化功能我们可以简单地进行探索性数据分析EDA(Exploratory Data Analysis)。

label分布情况

1
2
3
4
5
6
7
%matplotlib inline
%config InlineBackend.figure_format = 'png'
ax = dftrain_raw['Survived'].value_counts().plot(kind = 'bar',
figsize = (12,8),fontsize=15,rot = 0)
ax.set_ylabel('Counts',fontsize = 15)
ax.set_xlabel('Survived',fontsize = 15)
plt.show()

数据预处理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def preprocessing(dfdata):

dfresult= pd.DataFrame()

#Pclass
dfPclass = pd.get_dummies(dfdata['Pclass'])
dfPclass.columns = ['Pclass_' +str(x) for x in dfPclass.columns ]
dfresult = pd.concat([dfresult,dfPclass],axis = 1)

#Sex
dfSex = pd.get_dummies(dfdata['Sex'])
dfresult = pd.concat([dfresult,dfSex],axis = 1)

#Age
dfresult['Age'] = dfdata['Age'].fillna(0)
dfresult['Age_null'] = pd.isna(dfdata['Age']).astype('int32')

#SibSp,Parch,Fare
dfresult['SibSp'] = dfdata['SibSp']
dfresult['Parch'] = dfdata['Parch']
dfresult['Fare'] = dfdata['Fare']

#Carbin
dfresult['Cabin_null'] = pd.isna(dfdata['Cabin']).astype('int32')

#Embarked
dfEmbarked = pd.get_dummies(dfdata['Embarked'],dummy_na=True)
dfEmbarked.columns = ['Embarked_' + str(x) for x in dfEmbarked.columns]
dfresult = pd.concat([dfresult,dfEmbarked],axis = 1)

return(dfresult)

x_train = preprocessing(dftrain_raw).values
y_train = dftrain_raw[['Survived']].values

x_test = preprocessing(dftest_raw).values
y_test = dftest_raw[['Survived']].values

print("x_train.shape =", x_train.shape )
print("x_test.shape =", x_test.shape )

print("y_train.shape =", y_train.shape )
print("y_test.shape =", y_test.shape )

进一步使用DataLoader和TensorDataset封装成可以迭代的数据管道。

1
2
3
4
dl_train = DataLoader(TensorDataset(torch.tensor(x_train).float(),torch.tensor(y_train).float()),
shuffle = True, batch_size = 8)
dl_valid = DataLoader(TensorDataset(torch.tensor(x_test).float(),torch.tensor(y_test).float()),
shuffle = False, batch_size = 8)
1
2
3
4
# 测试数据管道
for features,labels in dl_train:
print(features,labels)
break

二,定义模型

使用Pytorch通常有三种方式构建模型:使用nn.Sequential按层顺序构建模型,继承nn.Module基类构建自定义模型,继承nn.Module基类构建模型并辅助应用模型容器进行封装。

此处选择使用最简单的nn.Sequential,按层顺序模型。

1
2
3
4
5
6
7
8
9
10
11
12
def create_net():
net = nn.Sequential()
net.add_module("linear1",nn.Linear(15,20))
net.add_module("relu1",nn.ReLU())
net.add_module("linear2",nn.Linear(20,15))
net.add_module("relu2",nn.ReLU())
net.add_module("linear3",nn.Linear(15,1))
net.add_module("sigmoid",nn.Sigmoid())
return net

net = create_net()
print(net)
1
2
from torchkeras import summary
summary(net,input_shape=(15,))

三,训练模型

Pytorch通常需要用户编写自定义训练循环,训练循环的代码风格因人而异。

有3类典型的训练循环代码风格:脚本形式训练循环,函数形式训练循环,类形式训练循环。

此处介绍一种较通用的脚本形式。

1
2
3
4
5
6
from sklearn.metrics import accuracy_score

loss_func = nn.BCELoss()
optimizer = torch.optim.Adam(params=net.parameters(),lr = 0.01)
metric_func = lambda y_pred,y_true: accuracy_score(y_true.data.numpy(),y_pred.data.numpy()>0.5)
metric_name = "accuracy"
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
epochs = 10
log_step_freq = 30

dfhistory = pd.DataFrame(columns = ["epoch","loss",metric_name,"val_loss","val_"+metric_name])
print("Start Training...")
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("=========="*8 + "%s"%nowtime)

for epoch in range(1,epochs+1):

# 1,训练循环-------------------------------------------------
net.train()
loss_sum = 0.0
metric_sum = 0.0
step = 1

for step, (features,labels) in enumerate(dl_train, 1):

# 梯度清零
optimizer.zero_grad()

# 正向传播求损失
predictions = net(features)
loss = loss_func(predictions,labels)
metric = metric_func(predictions,labels)

# 反向传播求梯度
loss.backward()
optimizer.step()

# 打印batch级别日志
loss_sum += loss.item()
metric_sum += metric.item()
if step%log_step_freq == 0:
print(("[step = %d] loss: %.3f, "+metric_name+": %.3f") %
(step, loss_sum/step, metric_sum/step))

# 2,验证循环-------------------------------------------------
net.eval()
val_loss_sum = 0.0
val_metric_sum = 0.0
val_step = 1

for val_step, (features,labels) in enumerate(dl_valid, 1):
# 关闭梯度计算
with torch.no_grad():
predictions = net(features)
val_loss = loss_func(predictions,labels)
val_metric = metric_func(predictions,labels)
val_loss_sum += val_loss.item()
val_metric_sum += val_metric.item()

# 3,记录日志-------------------------------------------------
info = (epoch, loss_sum/step, metric_sum/step,
val_loss_sum/val_step, val_metric_sum/val_step)
dfhistory.loc[epoch-1] = info

# 打印epoch级别日志
print(("\nEPOCH = %d, loss = %.3f,"+ metric_name + \
" = %.3f, val_loss = %.3f, "+"val_"+ metric_name+" = %.3f")
%info)
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("\n"+"=========="*8 + "%s"%nowtime)

print('Finished Training...')

四,评估模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
%matplotlib inline
%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt

def plot_metric(dfhistory, metric):
train_metrics = dfhistory[metric]
val_metrics = dfhistory['val_'+metric]
epochs = range(1, len(train_metrics) + 1)
plt.plot(epochs, train_metrics, 'bo--')
plt.plot(epochs, val_metrics, 'ro-')
plt.title('Training and validation '+ metric)
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend(["train_"+metric, 'val_'+metric])
plt.show()

plot_metric(dfhistory,"loss")
plot_metric(dfhistory,"accuracy")

五,使用模型

1
2
3
4
5
6
7
8
#预测概率
y_pred_probs = net(torch.tensor(x_test[0:10]).float()).data
y_pred_probs

#预测类别
y_pred = torch.where(y_pred_probs>0.5,
torch.ones_like(y_pred_probs),torch.zeros_like(y_pred_probs))
y_pred

六,保存模型

Pytorch 有两种保存模型的方式,都是通过调用pickle序列化方法实现的。

第一种方法只保存模型参数。

第二种方法保存完整模型。

推荐使用第一种,第二种方法可能在切换设备和目录的时候出现各种问题。

1
print(net.state_dict().keys())
1
2
3
4
5
6
7
8
# 保存模型参数

torch.save(net.state_dict(), "./data/net_parameter.pkl")

net_clone = create_net()
net_clone.load_state_dict(torch.load("./data/net_parameter.pkl"))

net_clone.forward(torch.tensor(x_test[0:10]).float()).data

搬运自: