Pytorch学习笔记11-构建模型的3种方法

由于时效问题,该文某些代码、技术可能已经过期,请注意!!!本文最后更新于:3 年前

如题

可以使用以下3种方式构建模型:

  • 1,继承nn.Module基类构建自定义模型。

  • 2,使用nn.Sequential按层顺序构建模型。

  • 3,继承nn.Module基类构建模型并辅助应用模型容器进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict)。

其中 第1种方式最为常见,第2种方式最简单,第3种方式最为灵活也较为复杂。

推荐使用第1种方式构建模型。

一,继承nn.Module基类构建自定义模型

以下是继承nn.Module基类构建自定义模型的一个范例。模型中的用到的层一般在__init__函数中定义,然后在forward方法中定义模型的正向传播逻辑。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch 
from torch import nn
from torchkeras import summary

class Net(nn.Module):

def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)
self.pool1 = nn.MaxPool2d(kernel_size = 2,stride = 2)
self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)
self.pool2 = nn.MaxPool2d(kernel_size = 2,stride = 2)
self.dropout = nn.Dropout2d(p = 0.1)
self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(64,32)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(32,1)
self.sigmoid = nn.Sigmoid()

def forward(self,x):
x = self.conv1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.dropout(x)
x = self.adaptive_pool(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.relu(x)
x = self.linear2(x)
y = self.sigmoid(x)
return y

net = Net()
print(net)

二,使用nn.Sequential按层顺序构建模型

使用nn.Sequential按层顺序构建模型无需定义forward方法。仅仅适合于简单的模型。

以下是使用nn.Sequential搭建模型的一些等价方法。

1,利用add_module方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(64,32))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(32,1))
net.add_module("sigmoid",nn.Sigmoid())

print(net)
2,利用变长参数

这种方式构建时不能给每个层指定名称。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
net = nn.Sequential(
nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
nn.MaxPool2d(kernel_size = 2,stride = 2),
nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
nn.MaxPool2d(kernel_size = 2,stride = 2),
nn.Dropout2d(p = 0.1),
nn.AdaptiveMaxPool2d((1,1)),
nn.Flatten(),
nn.Linear(64,32),
nn.ReLU(),
nn.Linear(32,1),
nn.Sigmoid()
)

print(net)
3,利用OrderedDict
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
from collections import OrderedDict

net = nn.Sequential(OrderedDict(
[("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)),
("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)),
("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)),
("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2)),
("dropout",nn.Dropout2d(p = 0.1)),
("adaptive_pool",nn.AdaptiveMaxPool2d((1,1))),
("flatten",nn.Flatten()),
("linear1",nn.Linear(64,32)),
("relu",nn.ReLU()),
("linear2",nn.Linear(32,1)),
("sigmoid",nn.Sigmoid())
])
)
print(net)

三,继承nn.Module基类构建模型并辅助应用模型容器进行封装

当模型的结构比较复杂时,我们可以应用模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict)对模型的部分结构进行封装。

这样做会让模型整体更加有层次感,有时候也能减少代码量。

注意,在下面的范例中我们每次仅仅使用一种模型容器,但实际上这些模型容器的使用是非常灵活的,可以在一个模型中任意组合任意嵌套使用。

1,nn.Sequential作为模型容器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Net(nn.Module):

def __init__(self):
super(Net, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
nn.MaxPool2d(kernel_size = 2,stride = 2),
nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
nn.MaxPool2d(kernel_size = 2,stride = 2),
nn.Dropout2d(p = 0.1),
nn.AdaptiveMaxPool2d((1,1))
)
self.dense = nn.Sequential(
nn.Flatten(),
nn.Linear(64,32),
nn.ReLU(),
nn.Linear(32,1),
nn.Sigmoid()
)
def forward(self,x):
x = self.conv(x)
y = self.dense(x)
return y

net = Net()
print(net)
2,nn.ModuleList作为模型容器

注意下面中的ModuleList不能用Python中的列表代替。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Net(nn.Module):

def __init__(self):
super(Net, self).__init__()
self.layers = nn.ModuleList([
nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
nn.MaxPool2d(kernel_size = 2,stride = 2),
nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
nn.MaxPool2d(kernel_size = 2,stride = 2),
nn.Dropout2d(p = 0.1),
nn.AdaptiveMaxPool2d((1,1)),
nn.Flatten(),
nn.Linear(64,32),
nn.ReLU(),
nn.Linear(32,1),
nn.Sigmoid()]
)
def forward(self,x):
for layer in self.layers:
x = layer(x)
return x
net = Net()
print(net)
3,nn.ModuleDict作为模型容器

注意下面中的ModuleDict不能用Python中的字典代替。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Net(nn.Module):

def __init__(self):
super(Net, self).__init__()
self.layers_dict = nn.ModuleDict({"conv1":nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
"pool": nn.MaxPool2d(kernel_size = 2,stride = 2),
"conv2":nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
"dropout": nn.Dropout2d(p = 0.1),
"adaptive":nn.AdaptiveMaxPool2d((1,1)),
"flatten": nn.Flatten(),
"linear1": nn.Linear(64,32),
"relu":nn.ReLU(),
"linear2": nn.Linear(32,1),
"sigmoid": nn.Sigmoid()
})
def forward(self,x):
layers = ["conv1","pool","conv2","pool","dropout","adaptive",
"flatten","linear1","relu","linear2","sigmoid"]
for layer in layers:
x = self.layers_dict[layer](x)
return x
net = Net()
print(net)

搬运自: