pytorch模型转paddle模型踩坑记录

由于时效问题,该文某些代码、技术可能已经过期,请注意!!!本文最后更新于:3 年前

如题

踩坑1

网上有很多使用x2paddle把pytorch转paddle的文章,不过大不部分也都是采用的迂回路线,就是先转ONNX,再转paddle,试了下水,果然没有那么简单的事情,一直报错,最后好像报了个 model not support,,,,遂放弃。

踩坑2

使用工具不行只有一步一步慢慢转,这也是最开始使用的方法,起初报错没解决才找到x2paddle的,没想到又回归到最原始的方法了。
转换的过程一直卡在网络这块,所以就先把网络这块拿出来记录下。

网络
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
######################### torch 版  ############################
import torch
import torch.nn as nn
import torch.nn.functional as F

class SeqNet(nn.Module):
def __init__(self):
super(SeqNet, self).__init__()
# input
self.conv1 = nn.Conv1d(12, 10, 50)
self.conv2 = nn.Conv1d(12, 10, 200)
self.conv3 = nn.Conv1d(12, 10, 500)
self.conv4 = nn.Conv1d(12, 10, 1000)
self.pooling = nn.MaxPool2d((1, 200))
self.fc1 = nn.Linear(900, 64)
self.fc2 = nn.Linear(64, 1)

def forward(self, x):
batch_size = x.size(0)

out1 = self.pooling(F.relu(self.conv1(x)))
out2 = self.pooling(F.relu(self.conv2(x)))
out3 = self.pooling(F.relu(self.conv3(x)))
out4 = self.pooling(F.relu(self.conv4(x)))

out = torch.cat([out1, out2, out3, out4], 2)
out = out.view(batch_size, -1)
out = self.fc1(out)
out = F.relu(out)
# out = F.dropout(out, p=0.2)
out = self.fc2(out)
return out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
######################### paddle 版  ############################
import paddle
import paddle.nn as nn
import paddle.nn.functional as F

class SeqNet(nn.Layer):
def __init__(self):
super(SeqNet, self).__init__()
# input
self.conv1 = nn.Conv1D(12, 10, 50)
self.conv2 = nn.Conv1D(12, 10, 200)
self.conv3 = nn.Conv1D(12, 10, 500)
self.conv4 = nn.Conv1D(12, 10, 1000)
# self.pooling = nn.MaxPool2D((1, 200))
### torch版的 nn.MaxPool2D 输入数剧格式为(NCHW 或 CHW),paddle版的 nn.MaxPool2D 输入数据格式只有 NCHW
### N代表batch_size, C代表channel,H代表高度,W代表宽度
### 所以这里用 paddle 的 nn.MaxPool1D 替换了 torch 的 nn.MaxPool2D
self.pooling = nn.MaxPool1D(200)
self.fc1 = nn.Linear(900, 64)
self.fc2 = nn.Linear(64, 1)

def forward(self, x):
### torch.tensor.size 对应 paddle.tensor.shape
batch_size = x.shape[0]

out1 = self.pooling(F.relu(self.conv1(x)))
out2 = self.pooling(F.relu(self.conv2(x)))
out3 = self.pooling(F.relu(self.conv3(x)))
out4 = self.pooling(F.relu(self.conv4(x)))

### torch.cat 对应 paddle.concat
# out = torch.cat([out1, out2, out3, out4], 2)
out = paddle.concat([out1, out2, out3, out4], 2)
### torch.tensor.view 对应 paddle.tensor.reshape
# out = out.view(batch_size, -1)
out = paddle.reshape(out, [batch_size, -1])
out = self.fc1(out)
out = F.relu(out)
# out = F.dropout(out, p=0.2)
out = self.fc2(out)

return out
对于自定义数据集 paddle和pytorch实现的方法类似
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from paddle.io import Dataset
class MyDataset(Dataset):
"""
步骤一:继承paddle.io.Dataset类
"""
def __init__(self, mode='train'):
"""
步骤二:实现构造函数,定义数据读取方式,划分训练和测试数据集
"""
super(MyDataset, self).__init__()

if mode == 'train':
self.data = [
['traindata1', 'label1'],
['traindata2', 'label2'],
['traindata3', 'label3'],
['traindata4', 'label4'],
]
else:
self.data = [
['testdata1', 'label1'],
['testdata2', 'label2'],
['testdata3', 'label3'],
['testdata4', 'label4'],
]

def __getitem__(self, index):
"""
步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)
"""
data = self.data[index][0]
label = self.data[index][1]

return data, label

def __len__(self):
"""
步骤四:实现__len__方法,返回数据集总数目
"""
return len(self.data)
还有就是训练这块
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
######################### torch 版  ############################
import torch
import torch.nn as nn
model = SeqNet()
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4 ,weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=max_epoch)
criterion = nn.BCEWithLogitsLoss()

for i, (inputs, labels) in (enumerate(trainloader)):
inputs = inputs.to(device)
labels = labels.float().to(device)

out_linear = model(inputs).to(device)
loss = criterion(out_linear, labels.unsqueeze(1))

optimizer.zero_grad()
loss.backward()
optimizer.step()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
######################### paddle 版  ############################
import paddle
import paddle.nn as nn
import paddle.optimizer as optim

model = SeqNet()
model.to(device)
optimizer = optim.AdamW(learning_rate=1e-4, parameters=model.parameters(),weight_decay=5e-4)
### optimizer = optim.Adam(parameters=model.parameters(), learning_rate=1e-4)
### paddle 版CosineAnnealingDecay接収的是 learning_rate参数
scheduler = optim.lr.CosineAnnealingDecay(1e-4, T_max=max_epoch)
criterion = nn.BCEWithLogitsLoss()

for i, (inputs, labels) in (enumerate(trainloader)):
# inputs = inputs.to(device)
inputs = inputs.cuda()
# labels = labels.float().to(device)
labels = labels.cuda()
# labels = paddle.reshape(labels, (30, 1))
labels = paddle.cast(labels, dtype='float32') ## 转换数据类型

out_linear = model(inputs)
out_linear = paddle.reshape(out_linear, (batch_size,))
loss = criterion(out_linear, labels)
# loss = criterion(out_linear, labels.unsqueeze(1))

# optimizer.zero_grad()
loss.backward()
optimizer.step()
optimizer.clear_grad()

其余剩下就是一些小问题了,直接运行debug改就好了。
pytorch 完整版地址:https://github.com/shubihu/coggle_learn/blob/main/baseline/pytorch.ipynb
paddle 完整版地址:https://github.com/shubihu/coggle_learn/blob/main/baseline/paddle.ipynb
aistudio上项目的地址为:https://aistudio.baidu.com/aistudio/projectdetail/2724787?contributionType=1


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!