Pyecharts 不同颜色绘制正负柱状图

由于时效问题,该文某些代码、技术可能已经过期,请注意!!!本文最后更新于:3 年前

如题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import akshare as ak
import pyecharts.options as opts
from pyecharts.charts import Bar, Line
from pyecharts.commons.utils import JsCode

fund_em_info_df = ak.fund_em_open_fund_info(fund="006008", indicator="单位净值走势")

fund_name = '诺安积极配置混合C'
x_data = fund_em_info_df['净值日期'].tolist()
y_data = fund_em_info_df['单位净值'].tolist()
z_data = fund_em_info_df['日增长率'].tolist()

background_color_js = (
"new echarts.graphic.LinearGradient(0, 0, 0, 1, "
"[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)"
)
area_color_js = (
"new echarts.graphic.LinearGradient(0, 0, 0, 1, "
"[{offset: 0, color: '#eb64fb'}, {offset: 1, color: '#3fbbff0d'}], false)"
)


bar = (
Bar(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js), width='700px', height='450px')) ## width, height修改画布大小
.add_xaxis(xaxis_data=x_data)
.add_yaxis(
series_name="",
y_axis=z_data,
label_opts=opts.LabelOpts(is_show=False),
itemstyle_opts=opts.ItemStyleOpts(
### 调用js代码绘制不同颜色
color=JsCode(
"""
function(params) {
var colorList;
if (params.data >= 0) {
colorList = '#FF4500';
} else {
colorList = '#14b143';
}
return colorList;
}
"""
)
)
)
.set_global_opts(
title_opts=opts.TitleOpts(
title=fund_name,
pos_bottom="90%",
pos_left="center",
title_textstyle_opts=opts.TextStyleOpts(color="#fff", font_size=16),
),
xaxis_opts=opts.AxisOpts(
type_="category",
boundary_gap=False,
axislabel_opts=opts.LabelOpts(margin=30, color="#ffffff63"),
axisline_opts=opts.AxisLineOpts(is_show=False),
axistick_opts=opts.AxisTickOpts(
is_show=True,
length=25,
linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),
),
splitline_opts=opts.SplitLineOpts(
is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")
),
),
yaxis_opts=opts.AxisOpts(
type_="value",
position="left",
axislabel_opts=opts.LabelOpts(margin=20, color="#ffffff63"),
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(width=2, color="#fff")
),
axistick_opts=opts.AxisTickOpts(
is_show=True,
length=15,
linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),
),
splitline_opts=opts.SplitLineOpts(
is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")
),
),
# legend_opts=opts.LegendOpts(is_show=True),
datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")] ## 时间轴显示并可同通过鼠标滑动
)
)


line = (
Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js)))
.add_xaxis(xaxis_data=x_data)
.add_yaxis(
series_name="",
y_axis=[round(i * 10, 2) for i in y_data],
is_smooth=True,
is_symbol_show=True,
symbol="circle",
symbol_size=6,
linestyle_opts=opts.LineStyleOpts(color="#fff"),
label_opts=opts.LabelOpts(is_show=True, position="top", color="white"),
itemstyle_opts=opts.ItemStyleOpts(
color="red", border_color="#fff", border_width=3
),
tooltip_opts=opts.TooltipOpts(is_show=False),
areastyle_opts=opts.AreaStyleOpts(color=JsCode(area_color_js), opacity=1),
)
)

bar.overlap(line) ## 混合柱状图和线图
bar.render_notebook()

结果如下

参考